Correlation Matrix

# FALLBACK
library(dplyr)
if(!exists("raw_data")) {
   raw_data <- data.frame(
    age = rnorm(50, 20, 2),
    anxiety = rnorm(50, 10, 3),
    depression = rnorm(50, 10, 3)
  )
}

# 1. Select Numeric Vars
numeric_vars <- raw_data %>% 
  select(where(is.numeric)) 

# 2. Compute Correlation
cor_mat <- cor(numeric_vars, use = "complete.obs")

# 3. Simple Visualization (Round to 2 decimals)
round(cor_mat, 2) %>% 
  knitr::kable(caption = "Pearson Correlations")
Table 1: Correlation Matrix
Pearson Correlations
age anxiety depression
age 1.00 -0.12 -0.14
anxiety -0.12 1.00 -0.25
depression -0.14 -0.25 1.00